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The development of coarse-grained (CG) models that correctly represent the important features of
compounds is essential to overcome the limitations in time scale and system size currently encoun-
tered in atomistic molecular dynamics simulations. Most approaches reported in the literature model
one or several molecules into a single uncharged CG bead. For water, this implicit treatment of the
electrostatic interactions, however, fails to mimic important properties, e.g., the dielectric screening.
Therefore, a coarse-grained model for water is proposed which treats the electrostatic interactions
between clusters of water molecules explicitly. Five water molecules are embedded in a spherical
CG bead consisting of two oppositely charged particles which represent a dipole. The bond connect-
ing the two particles in a bead is unconstrained, which makes the model polarizable. Experimental
and all-atom simulated data of liquid water at room temperature are used for parametrization of the
model. The experimental density and the relative static dielectric permittivity were chosen as pri-
mary target properties. The model properties are compared with those obtained from experiment,
from clusters of simple-point-charge water molecules of appropriate size in the liquid phase, and for
other CG water models if available. The comparison shows that not all atomistic properties can be
reproduced by a CG model, so properties of key importance have to be selected when coarse graining
is applied. Yet, the CG model reproduces the key characteristics of liquid water while being compu-
tationally 1–2 orders of magnitude more efficient than standard fine-grained atomistic water models.
© 2011 American Institute of Physics. [doi:10.1063/1.3553378]

I. INTRODUCTION

Molecular dynamics (MD) simulations are a powerful
tool to provide insight into molecular processes involving
peptides and proteins. The system size and the time scale
of atomistic simulations are, however, limited to tens of
nanometers and nanoseconds by computational cost. A possi-
ble remedy is coarse graining (CG) of “unimportant” degrees
of freedom, in which a group of atoms is represented by a sin-
gle bead or particle. This may considerably reduce the number
of particle–particle interactions to be calculated. Moreover,
the interaction function describing the forces between coarse-
grained particles will be a smoother function of their distance
than that for the forces between atoms because of the aver-
aging over the latter degrees of freedom. These two factors
allow for an increased efficiency of up to orders of magnitude
of CG versus all-atom fine-grained (FG) simulations.

There exists no general procedure to select degrees of
freedom for coarse graining, and to determine how many
of them are to be coarse grained and in what way. The
type of “unimportant” degrees of freedom, e.g., bond-length
vibrations in molecules, depends on the molecular property of
interest, and the number of “unimportant” degrees of freedom
depends on the scale of the phenomenon to be studied. There-
fore, CG models found in the literature range from mapping
of whole molecules or even groups of molecules onto one
bead, as used in simulations of colloids or membranes, to
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systems where only two or three atoms are treated as one
bead. In the present study, we focus on “small scale” coarse
graining of water as this is the most important solvent in
biomolecular systems. The solvent–solvent interactions, in
particular for water, account for the bulk of the computational
cost of atomistic biomolecular simulations, but their details
are of minor interest. Thus, simulating these interactions at
a lower resolution is particularly interesting as a means of
enhancing the efficiency of biomolecular simulations.

In the past two decades, a large number of simple CG
models have been developed for liquid water.1–10 These mod-
els differ in the number of atoms per bead, i.e., the resolu-
tion, ranging from one water molecule per bead1–3, 6–8, 10 to
three4, 9 or even four.5 All 1-to-1 models (one bead repre-
sents one water molecule) have one interaction site, except
the two-site model of Izvekov and Voth.7 The 1-to-1 mapping
has the advantage that a comparison with experimental data is
in principle straightforward, although one has to accept that
coarse graining involves per se a loss of information,10–13 but
the speed-up compared with much used all-atom models that
involve three interaction sites is rather limited. Models involv-
ing three or four water molecules per bead make simulations
much more efficient, but at the expense of an increased diffi-
culty to reproduce the properties of the underlying atomistic
model.14

All simple CG models mentioned above model water, in
principle, as a kind of van der Waals liquid with one interac-
tion site per bead, where the electrostatic interactions are in-
corporated into an effective pairwise potential energy which
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is either Lennard-Jones like, a Morse function or numeri-
cally represented. As there is no general procedure to derive
such an effective potential energy function or to determine
how many degrees of freedom can be coarse grained, differ-
ent approaches can be taken. The most commonly used ones
are center-of-mass-based techniques such as reverse Monte
Carlo,15 iterative Boltzmann inversion,16 or force matching
(FM),7 which derive numerically represented CG forces on
the beads from the underlying atomic-scale positions of the
atoms or forces on the atoms. This approach, however, fails
when multiple water molecules are mapped onto one bead.9, 14

Hence for lower resolution models, other approaches have to
be used in which an effective potential energy function is ei-
ther derived utilizing a clustering algorithm,14 or through fit-
ting to structural data or to thermodynamic properties such
as density, compressibility, surface tension, and solvation free
energies.5, 9 Note again that by coarse graining less properties
than at the atomic level can be faithfully represented simulta-
neously. Thus, a limited number of properties of key impor-
tance have to be chosen for calibration depending on the prop-
erty or process of interest. In addition, the effective interaction
function depends, independently of the chosen approach, on
the thermodynamic state point, i.e., temperature and pressure,
at which it was calibrated or derived. The energy and entropy
of the coarse-grained degrees of freedom at the specific state
point are incorporated into the effective potential energy func-
tion, which is therefore not only limited in its representativity,
but also in its transferability.11

Modeling the electrostatic interactions implicitly by in-
corporating them into an effective pairwise potential energy
function is a challenge that must be met, as these interactions
are crucial for the properties of highly dielectric compounds
such as water. The electrostatic effects can only poorly be
mimicked by a deep Lennard-Jones function, which can even
lead to freezing of liquid water at room temperature, as was
found for the MARTINI model.17 Recently, new CG mod-
els were therefore developed which treat the electrostatics
explicitly.18–20 Borgis et al.18 reported a coarse-grained sol-
vent model (PCGS) with a 3-to-1 mapping, where the CG
particles carry induced dipoles at their centers which inter-
act with the solute generated electric field but not with each
other. The solvent–solvent interactions consist only of a short-
ranged Lennard-Jones like repulsive and a Gaussian attractive
part. Use of a Gaussian function is computationally somewhat
inefficient because the calculation of the nonbonded interac-
tions is the most expensive part of a simulation. In addition,
the functional form, exp(−r2), of a Gaussian energy function
for attractive forces is a poor approximation of the r−6 van der
Waals or r−1 Coulomb function that govern attractive forces.
Two other models with a 4-to-1 mapping and utilizing a dipo-
lar representation of electrostatic interactions were proposed
by Wu et al.19 (BMW model) and Marrink et al.20 (polarizable
MARTINI model). Both are three-site models consisting of a
van der Waals center and two covalently connected interaction
sites resembling a huge H2O molecule. In the BMW model,
all three particles are charged, thus forming a multipole. Their
relative positions are fixed, i.e., it is a rigid model. It uses
a soft Born–Mayer–Huggins function for the van der Waals
interactions between the centers of the beads which makes

the combination with fine-grained, all-atom molecular mod-
els difficult. In the polarizable MARTINI model on the other
hand, the dipole is formed solely by two oppositely charged
interaction sites rigidly connected to the central site, whereas
the central site interacts only through a Lennard-Jones func-
tion with the centers of the other beads. The angle between the
two bonds connecting the two charged interaction sites with
the center is variable which makes this MARTINI model po-
larizable. A deficiency of this model is that it freezes above
the experimental freezing point of water, just like the original
purely Lennard-Jones MARTINI model,5, 17 and that it has a
too low surface tension compared with the experiment.

Here, we present a simpler, more efficient polarizable CG
water model for use in combination with the GROMOS force
field.21 Based on an analysis of the cluster properties of the
all-atom FG simple-point-charge (SPC) model22 for liquid
water, it uses a five-to-one mapping. A CG bead consists of
only two particles with opposite charges. Both features lead to
a maximum increase in simulation efficiency while preserving
the most important thermodynamic and dielectric properties
of liquid water. The standard GROMOS (Ref. 23) Lennard-
Jones 12-6 function is used to represent van der Waals inter-
actions. This makes the model efficient and easy to implement
and compatible with most FG molecular models. The model
was parametrized against experimental data for the density,
surface tension, and relative static dielectric permittivity of
water in the liquid phase at room temperature and pressure.
Its liquid phase properties are calculated and compared with
those of the all-atom FG SPC and SPC/E (Ref. 24) water mod-
els, with those of the two other mentioned CG water models
that treat electrostatic interactions explicitly, and with the ex-
perimental data. In addition, the liquid phase properties of the
CG model are compared with those of an all-atom FG SPC
simulation in which five water molecules are held together to
represent one bead by distance restraining their oxygen atoms.

II. METHODS

A. All-atom and coarse-grained models

The all-atom fine-grained water model used for
parametrization of and comparison to the CG model is
the SPC model.22 As a CG bead represents multiple water
molecules, SPC clusters of different size, i.e., n = 1–5 water
molecules per cluster, were studied. The grouping of n wa-
ter molecules into a cluster in an unrestrained simulation is
not trivial and is further complicated by the neighbors chang-
ing over time. Therefore, a clustering algorithm was applied
where the (n – 1) nearest neighbors of each water molecule
were determined in each configuration and stored as a cluster.
Afterwards, when looping over pairs of clusters for analysis,
the overlapping clusters, i.e., those sharing one or more water
molecules, were excluded from the calculation of interactions,
distances, etc. This procedure allowed for good statistics and
clusters of near ideal size. However, this clustering algorithm
could not be used for the calculation of properties, where the
time evolution of a cluster was required. For such proper-
ties, simulations were performed in which the n molecules
of a cluster were held together by distance restraints. The
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FIG. 1. Schematic representations of a bead of the CG water model repre-
senting five water molecules.

distances between the oxygen atom of the central water
molecule of the cluster and the oxygens of the (n – 1)
noncentral water molecules were restrained by an attractive
half-harmonic potential energy function which was zero at a
distance r0 and became linear beyond a distance rlin.25

The electrostatic interactions, which are dominating the
potential energy between clusters, should be treated explicitly
in the CG model. Thus, it consists of a spherical CG bead
which has two electrostatic interaction sites, centre of wa-
ter bead (CW) and dipole particle (DP), representing a po-
larizable dipole (Fig. 1). The first site, named CW, interacts
with other CG beads through a pairwise Lennard-Jones and
an electrostatic potential energy function, the former only ap-
plying to the CW sites and the latter to both the CW and the
DP sites. The second interaction site is a so-called “dipole
particle” which carries a charge opposite to that of the central
site and interacts purely electrostatically, i.e., has no Lennard-
Jones interaction, with the charged sites of other CG beads.
The nonbonded potential energy between two sites i and j
depends on their distance ri j and has three contributions:

V i j
LJ(ri j ) =

(
C12(i, j)

r6
i j

− C6(i, j)

)
1

r6
i j

, (1)

V i j
c (ri j ) = qi q j

4πε0εcs

1

ri j
, (2)

V i j
r f (ri j ) = − qi q j

4πε0εcs

(
1
2 Cr f r2

i j

R3
r f

+ 1 − 1
2 Cr f

Rr f

)
, (3)

where Rr f = Rc is the cut-off and reaction-field radius,
C12(i, j) and C6(i, j) the Lennard-Jones parameters, qi the
charge of particle i , and Cr f the Coulomb reaction-field con-
stant which is defined as23

Cr f = (2εcs − 2εr f )(1 + κ Rr f ) − εr f (κ Rr f )2

(εcs + 2εr f )(1 + κ Rr f ) + εr f (κ Rr f )2
. (4)

The total nonbonded potential energy is obtained by summing
over all ordered pairs (i, j) thereby taking into account the

different nearest-neighbor and cut-off radius exclusions,26
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N−1∑
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N∑
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(
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)
,

+
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N∑
j>i
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V i j
r f (ri j ), (5)

−
N∑

i=1

q2
i

4πε0εcs

1

2

(
1 − 1

2 Cr f

Rr f

)
,

where the last term is a constant added to represent the self-
interaction of the charged particles. For atomistic models,
the dielectric permittivity inside the cut-off sphere εcs = 1
whereas the CG model has εcs > 1 which represents the di-
electric response of the inside of a CG bead. The mass of the
two particles, CW and DP, sums to the mass of five water
molecules, whereas the ratio of the masses is an adjustable
parameter of the model. The two interaction sites i and j
of a bead that do not interact mutually through V i j

LJ and V i j
c

are connected by an unconstrained bond with a half-attractive
quartic potential energy function

V CG
bond(ri j ) = 1

2
Kb(ri j − rCW–DP)4, (6)

for ri j > rCW–DP, where rCW–DP sets a bound on the distance
ri j between particles i and j belonging to one CG bead. The
use of a quartic instead of a harmonic attractive bond-length
potential energy function makes the polarizability nonlinear27

and has the advantage that overpolarization due to close dis-
tances between charges of different molecules is avoided as a
result of the superlinear increase of the forces for longer bond
lengths. The polarizability of the model resides in the free
rotation of the DP particle around the central CW site and
the oscillation of the bond connecting them, adjusting thus
the dipole moment of a CG bead to the electric field of the
environment.

B. Simulation details

All simulations were performed under isothermic-
isobaric (NpT) conditions, if not stated otherwise, using a
modified version of the GROMOS05 package of programs.23

The temperature was kept at a reference value by weak cou-
pling to a temperature bath with a coupling time of 0.1
ps,28 and the pressure was maintained at 1.013 bar (1 atm)
by the same type of algorithm using a coupling time of
0.5 ps. The integration time step was 2 fs. The energy,
atom positions, and other relevant quantities were saved ev-
ery 1.0 ps (500 steps) for analysis. For analysis of the
FG SPC water properties available simulations at 303 K
were used, whereas the CG model simulations were done at
the slightly lower temperature of 298 K to ease comparison
with experiment and literature.
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TABLE I. Parameters for the half-harmonic attractive distance restraining
between oxygen atoms of water molecules used in liquid phase simulations
of SPC clusters. The ideal distance r0, the distance rlin beyond which the
attractive half-harmonic energy function (Ref. 23) becomes linear, and the
harmonic force constant Kd for clusters of n SPC water molecules, where n
= 2–5, are given.

Cluster size, n r0 (nm) rlin (nm) Kd (kJ mol−1 nm−2)

2 0.16 0.20 400
3 0.22 0.28 550
4 0.25 0.30 800
5 0.30 0.42 5000

1. Atomistic simulations

A cubic box with 12 800 SPC water molecules and an
initial box length of 7.27 nm was used together with peri-
odic boundary conditions. For the nonbonded interactions,
a twin-range method was used with cut-off radii of 0.8 nm
(short range) and 1.4 nm (long range). The force due to atoms
beyond the long-range cut-off was modeled by a reaction-
field force29 representing a continuum with a relative dielec-
tric permittivity εr f of 61.30 The OH bond lengths and the
H–H distance were constrained to the ideal SPC values with
the SHAKE algorithm.31 An isothermal compressibility of
4.575 × 10−4 (kJ mol−1 nm−3)−1 was used in the pressure
coupling. The pairlist for pairs within the short-range cut-off
and the energies and forces for long-range pairs were updated
every 10 fs (five time steps). After energy minimization, an
equilibration simulation of 100 ps was carried out at 303 K.
The SPC water box was then simulated for 3 ns, of which only
the last 1.5 ns were used for analysis.

For the simulations with distance restraining between the
oxygen atoms of SPC molecules of a cluster, the last con-
figuration of the unrestrained simulation was used as starting
configuration. In Table I, r0, rlin and the force constant Kd for
the distance restraints are listed for the different cluster sizes
n equal to 2–5. All systems were simulated for 2 ns at 303 K.
For n = 3, only 12 798 SPC water molecules were used as
12 800 is not divisible by three.

For the simulation under canonical (NVT) conditions of a
cluster of five water molecules in vacuo, stochastic dynamics
was applied with a friction coefficient of 91 ps−1. The tem-
perature was raised from 100 to 303 K in steps of 50 K, each
1 ns long. At 303 K, the cluster was simulated for 10 ns.

The four different perturbations of the thermodynamic
cycle performed with thermodynamic integration (TI) are
shown in Fig. 2. The λ-dependence of the Hamiltonian is
specified in Ref. 23. To avoid numerical instabilities as the
nonbonded interactions between atoms are switched on or
off during the perturbations a soft-core nonbonded interac-
tion with αLJ = 0.5 and αcr f = 0.5 nm2 was used.32 The
simulations were carried out at 303 K under NVT conditions
at 21 equally spaced λ-values between 0 and 1 with two
additional λ-values between 0 and 0.1. For the three perturba-
tions Clusterliquid → Clustergas, Clusterliquid → SPCliquid, and
SPCliquid → SPCgas, two energy groups were defined: the first
energy group consisted of molecules 1–5 forming a cluster
and the second energy group of all other water molecules. For
the perturbation Clusterliquid → Clustergas, the interactions

FIG. 2. Thermodynamic cycle between clusters of SPC water molecules and
single SPC water molecules in the gas and in the liquid phase. Clusters are
held together by distance restraints (black dashed lines).

between the two energy groups were scaled by a factor that
decreased from 1.0 (liquid) to 0.0 (gas) at 23 λ-values, each
simulated for 300 ps (after 150 ps equilibration). As starting
configuration for all λ-values, the last configuration of the
unperturbed distance restraining simulation was taken. For
the perturbation Clusterliquid → SPCliquid, the four noncentral
water molecules in the cluster were perturbed to dummies,
i.e., having zero nonbonded interactions, while leaving the
distance restraints unchanged. As starting configuration for
all λ-values, the last configuration of the unperturbed distance
restraining simulation was taken. Simulations at each λ-value
were 200 ps long after 100 ps equilibration. The configura-
tion at λ = 1 (liquid) was used further for the perturbation
SPCliquid → SPCgas, where the central nondummy water
molecule in the cluster was perturbed to dummy. Simulations
at each λ-value were 400 ps long after 50 ps equilibration. For
the perturbation Clustergas → SPCgas, stochastic dynamics
(SD) simulations with a friction coefficient of 91 ps−1 were
performed using the same perturbation procedure as for
Clusterliquid → SPCliquid. Simulations at each λ-value were
2 ns long after 100 ps equilibration.

2. Coarse-grained simulations

A cubic box with 2560 CG beads, i.e., 5120 particles, and
an initial box length of 7.27 nm was used together with pe-
riodic boundary conditions. For the nonbonded interactions,
a single-range cut-off radius of 2.0 nm was applied. For the
interactions outside the cut-off, a reaction-field force29 with
a relative dielectric permittivity εr f of 78.5 was used.33 The
pairlist for pairs within the cut-off was updated every 10 fs
(five time steps). For the electrostatic interactions within the
cut-off sphere, a dielectric permittivity εcs of 2.5 was used. An
isothermal compressibility of 7.51×10−4 (kJ mol−1 nm−3)−1

was used in the pressure coupling. At 298 K, an equilibra-
tion of 100 ps with an integration time step of 2 fs was carried
out and subsequently, a production run of 1 ns was performed,
which was used for analysis. For the calculation of the thermal

Downloaded 23 Apr 2011 to 188.118.92.64. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



084110-5 Coarse-grained water model J. Chem. Phys. 134, 084110 (2011)

expansion coefficient α and the heat capacity C p, the system
was additionally simulated for 1 ns, after 100 ps equilibra-
tion, at 318 and 338 K under NpT conditions. To observe the
behavior of the system at lower temperatures, additional sim-
ulations at 278 and 258 K were carried out. For the calcula-
tion of the isothermal compressibility κT , NVT simulations of
1 ns length at three different densities ρ = 0.947, 0.997, and
1.047 g cm−3 were performed at 298 K. To derive the surface
tension γ , five additional 1 ns NVT simulations with different
starting velocities were carried out, where the box length in
z-direction was extended to 35 nm. The shear viscosity η was
calculated from a 1 ns NVT simulation where the elements of
the pressure tensor were saved every 0.1 ps.

To obtain the excess free energy for the CG model,
a TI simulation under NVT conditions was performed at
298 K, where all CG beads were perturbed to dummies along
21 equally spaced λ-values. The simulation at each λ-value
was 100 ps long with 50 ps equilibration, and as starting con-
figuration for all λ-values, the last configuration of the unper-
turbed simulation was used.

To check the influence of the size of the integra-
tion time step on the energy conservation, simulations un-
der microcanonical (NVE) conditions were carried out at
298 K using different integration time steps 
t = 2,
5, 10, 15, 20, 25, and 28 fs, and a cut-off radius of
2.0 nm. The simulations were performed for 2000 steps, while
the pairlist was updated every step and the energies were
saved every step. Additional NVE simulations with an en-
larged cut-off radius of 3.5 nm and integration time steps 
t
= 1, 2, 5, 10, 15, 20, and 25 fs were carried out for 5000 steps
at 298 K and the energy fluctuations were monitored.

C. Analysis

1. Intercluster and intracluster potential energy
V αβ

pot(r) and V αα
pot

The nonbonded potential energy V αβ
pot between two clus-

ters α and β (α �= β) as a function of the intercluster distance
rαβ , i.e., the distance between the centers of geometry of the
two clusters α and β was calculated using Eqs. (1)–(3)

V αβ
pot (rαβ) =

Nα∑
i=1

Nβ∑
j=1

V i j
L J (ri j ) + V i j

c (ri j ) + V i j
r f (ri j ), (7)

where Nα is the number of interaction sites in cluster α. Note
that the clusters can penetrate each other resulting in shorter
intercluster distances rαβ than can be found for the CG model.
The intracluster nonbonded potential energy V αα

pot was calcu-
lated using the same Eqs. (1)–(3) and (7), but in this case the
energy was simply summed up for each cluster.

2. Radial distribution function g(r)

The radial distribution function (RDF) g(r ) of the SPC
water clusters was calculated using

g(r ) = 1

4π (N − 1)ρr2
r

N−1∑
α=1

N∑
β>α

δ(rαβ − r ), (8)

where N is the number of clusters, rαβ is the distance between
the centers of geometry of two clusters α and β, and ρ is the
density. The second part of the equation counts all clusters,
that are at a distance r of each other.

3. Dipole moment, μ

The distribution of the dipole moment �μ of a cluster was
calculated by summation of the product of the charges and the
relative positions of the partial atomic charges in a cluster,

�μ =
Nc∑

i=1

qi · (�ri − �rCOG), (9)

where Nc is the number of partial charges in a cluster, �ri is
their positions, and �rCOG is the position of the centre of geom-
etry of the cluster.

To obtain the rotational correlation time τrot of the cluster
dipole moment, the clusters were monitored over time and the
autocorrelation function Crot(t) of �μ(t) was calculated using

Crot(t) = 〈�μ(τ ) · �μ(τ + t)〉τ,clusters = A exp

(
− t

τrot

)
.

(10)

Crot(t) shows in general an exponential decay, which thus can
be fitted by the expression shown in Eq. (10), where A is a
constant.

4. Self-diffusion coefficient, D

The diffusion coefficient D was obtained from the long-
time limit of the mean-square displacement using the Einstein
relation,34

D = lim
t→∞

〈(�r (τ + t) − �r (τ ))2〉τ,clusters

6t
, (11)

where �r (t) is the position of the COG of a cluster at time t
and the averaging was performed over both time and clusters.
Equation (11) can be applied directly or through fitting of the
linear regime of the time evolution.

5. Thermal expansion coefficient, α

The thermal expansion coefficient α of the CG model was
obtained using the finite-difference expression,35

α = 1

V

(
∂V

∂T

)
p

≈ −

⎛
⎜⎜⎝

ln

(
ρ2

ρ1

)
T2 − T1

⎞
⎟⎟⎠

p

, (12)

where V is the volume of the system, T the temperature, and
ρ the density.

6. Heat capacity, Cp

The heat capacity at constant pressure can be
approximated36 using the relation

C p ≈ U tot
2 − U tot

1

T2 − T1
+ ∂ Q

∂T
, (13)

where U tot is the total energy per molecule or bead, and Q
is the sum of the quantum contribution of the intramolecular
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vibrational modes and the difference between the quan-
tum mechanical and classical intermolecular vibrational
energy. These quantum contributions add up to about
–9.3 J mol−1 K−1 at 298 K and 1 atm.

7. Isothermal compressibility, κT

The isothermal compressibility κT of the CG model was
calculated using the finite-difference expression,37

κT = − 1

V

(
∂V

∂p

)
T

= 1

ρ

(
∂ρ

∂p

)
T

=
(

∂ln(ρ)

∂p

)
T

≈

⎛
⎜⎜⎝

ln

(
ρ2

ρ1

)
p2 − p1

⎞
⎟⎟⎠

T

(14)

8. Surface tension, γ

The surface tension γ of the CG model was obtained
through time averaging over the diagonal elements pii of the
pressure tensor using

γ = Lz

2

〈
pzz − 1

2
(pxx + pyy)

〉
, (15)

where Lz is the box length in the z-direction. The surface ten-
sion was further averaged over the five simulations with dif-
ferent starting velocities.

9. Shear viscosity, η

The shear viscosity was calculated using the Einstein
relation

η = 1

2

V

kB T
lim

t→∞
d

dt

〈

P2

αβ(t)
〉

αβ = xy, xz, yz, (16)

where V is the volume of the box, T is the temperature, and

Pαβ (t) is the “displacement” of the off-diagonal elements of
the pressure tensor Pαβ(t) which is defined as follows:


Pαβ(t) =
∫ t

0
Pαβ(t ′)dt ′ αβ = xy, xz, yz, (17)

with

Pαβ (t) = 1

V

⎛
⎝ N∑

i=1

pαi (t)pβi (t)

mi
+

N−1∑
i=1

N∑
j>i

fαi j (t)rβi j (t)

⎞
⎠ ,

(18)

where α and β are the x-, y-, or z-components, pαi is the
α-component of the momentum of particle i , fαi j is the α-
component of the force exerted on particle i by particle j ,
and rβi j is the β-component of the interparticle distance vec-
tor �ri j = �ri − �r j . Because of poor statistics at long simulation
times, the shear viscosity was calculated from the slope of

P2

αβ (t) between 2 and 7 ps.

10. Relative static dielectric permittivity, ε(0)

The relative static dielectric permittivity ε(0) was calcu-
lated by applying a constant homogeneous external electric

field �Eext and measuring the response of the polarization �P,26

ε(0) = 1 + 4π
〈Pz〉
Eext

z

, (19)

where �P can be calculated from the total dipole moment �M
of the system and its volume V ,

�P =
�M
V

= 1

V

N∑
i=1

qi �ri (20)

For small field strengths, the response of �P to �Eext is linear
and can be fitted with linear regression.

D. Parametrization of the CG model

In the SPC cluster analysis, a cluster size of n = 5 was
found to be optimal because of its spherical shape, which can
be easily represented by a simple sphere at the coarse-grained
level. The proposed model for CG water embedding five
atomistic water molecules in a single bead with two inter-
action sites was parametrized to reproduce the experimental
density and relative static dielectric permittivity of water at
298 K and 1 atm, while keeping the system in the liquid
phase. The latter property was selected as it is of importance
in characterizing the electrostatic effects of water. Using
this approach, the following parameters were found. The
charge of the CW particle is –0.575e and +0.575e for the DP
particle. The mass of CW is 60.077 amu and of DP 30.0 amu,
summing to the mass of five water molecules. The ratio of
the masses was an adjustable parameter used to reproduce
the rotational correlation time of the dipole moment of a
SPC cluster of five water molecules in the liquid phase. The
Lennard-Jones parameters of CW are εLJ = 1.5 kJ mol−1 and
σ = 0.495 nm which correspond to C6 = 0.088 kJ mol−1 nm6

and C12 = 1.298 × 10−3 kJ mol−1 nm12. For the bond
connecting the two particles in a bead, a force constant Kb of
2.0 × 106 kJ mol−1 nm−4 and an ideal distance rCW–DP

of 0.2 nm were used. Due to the bigger volume of a CG
bead compared with a SPC molecule, the cut-off radius for
the nonbonded interaction beyond which interactions are
approximated using a dielectric continuum reaction field had
to be increased. A value of 2.0 nm was judged to be suffi-
cient, as the error in the Lennard-Jones interaction became
smaller than 1.5% at this distance. A dielectric permittivity
εcs > 1 inside the cut-off sphere was chosen to represent the
dielectric response of the virtual internal degrees of freedom
of a CG bead as a mean-field response. A value εcs = 2.5
was found to give a relative static dielectric permittivity ε(0)
of the model close to the experimental one.

E. Pressure correction for multiple-molecule
CG bead models

In GROMOS, the hydrostatic pressure is defined using the
virial theorem,

P(t) = 2

3

Ekin,mol(t) − Wmol(t)

V (t)
, (21)
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FIG. 3. The intercluster nonbonded potential energy V αβ
pot [Eq. (7)] and its components V αβ

LJ and V αβ
cr f = V αβ

c + V αβ
r f of SPC clusters averaged over all clusters

(α, β) as a function of the intercluster distance rαβ with n = 1 (dotted-dashed), 2 (dotted), 3 (dashed), 4 (double-dotted-dashed), or 5 (solid) water molecules in
a simulation of liquid water at 303 K and 1 atm.

where Ekin,mol(t) is the molecular translational kinetic en-
ergy, Wmol(t) is the molecular virial, and V(t) is the volume
of the computational box. In the coarse-graining approach
applied here, the kinetic energy and the virial pressure per
molecule or bead are to be retained between the fine- and
coarse-grained simulation. As a coarse-grained bead has five
times less molecules than a corresponding cluster, Ekin,mol(t)
and Wmol(t) are five times smaller compared with the fine-
grained simulation. This reduction is corrected for by apply-
ing a coarse-graining factor

s tot
CG = 1

Na

Na∑
i=1

sCG,i, (22)

to the right-hand side of Eq. (21), where Na is the total num-
ber of atoms or particles, respectively, in the system. For a
coarse-grained particle sCG = 5, whereas for a fine-grained
atom sCG = 1.

III. RESULTS

A. All-atom SPC cluster analysis

1. Unrestrained simulations

Intercluster potential energy. The nonbonded potential
energy V αβ

pot (rαβ) between clusters of n water molecules is
shown in Fig. 3. The main contribution to the potential en-

ergy is the electrostatic interaction, and this electrostatic po-
tential energy in turn is governed by the interaction between
the closest water molecules. This can be seen by the fact that
both V αβ

crf = V αβ
c + V αβ

r f for n = 1 at r 
 0.25 nm and V αβ

crf for
n = 5 at r 
 0.5 nm (the intercluster distance corresponding
to the correct density) are roughly –25 kJ mol−1. Because in
the CG model the entropy of the n = 5 FG water molecules is
missing, a direct fitting of the potential energy of a CG liquid
to this value leads to freezing of the CG liquid.

Intracluster potential energy. The nonbonded potential
energy V αα

pot between the water molecules inside a cluster α

was calculated and averaged for the liquid and for the gaseous
phase. This energy is omitted when coarse graining is ap-
plied. In Table II, V αα

pot is shown for the different cluster sizes.
In the liquid phase, the cluster energy decreases with n with
an amount per added water molecule that monotonically de-
creases from 19.2 kJ mol−1 for n = 2–3 to 15 kJ mol−1 for
n = 4–5. In the gas phase, the amount only starts to decrease
for n = 4–5 and is much larger. This is due to the geometry
of the water molecules, which allows for optimal hydrogen
bonding of four molecules in the gas phase. Thus, the values
for the liquid and the gaseous phase diverge increasingly with
increasing cluster size.

Dipole moment distribution. The distribution of the
dipole moment μ of a cluster was calculated for cluster sizes
n = 2–5 and is shown in Fig. 4. The increase in the average
dipole moment by adding additional water molecules to the

TABLE II. The intracluster nonbonded potential energy of a cluster of n = 2–5 water molecules in the liquid phase (l) at 1 atm and in vacuo (g) at 303 K
from MD simulation of SPC clusters. The potential energies V are defined in Eqs. (1)–(3) and (7), while Vcr f = Vc + Vr f . The dipole moment μ is defined
in Eq. (9). The diffusion coefficients D [Eq. (11)] were obtained for n ≥ 2 from MD simulations in which clusters of water molecules were held together by
restraining their oxygen–oxygen distances.

Cluster V αα
pot (l) V αα

LJ (l) V αα
cr f (l) V αα

pot (g) V αα
LJ (g) V αα

cr f (g) 〈μ〉(l) 〈μ〉(g) D(l)

size, n (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (Debye) (Debye) (cm2 s−1)

2 –18.4 11.1 –29.5 –18.6 4.3 –22.9 3.7 4.9 2.3 × 10−5

3 –37.6 16.7 –54.3 –48.3 11.5 –59.8 4.7 4.2 1.6 × 10−5

4 –54.5 19.4 –73.8 –92.5 22.5 –115.0 5.5 2.9 1.2 × 10−5

5 –69.5 20.8 –90.2 –119.9 28.6 –148.5 6.1 2.3 0.93 × 10−5
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FIG. 4. The distribution of the cluster dipole moment μ [Eq. (9)] in liquid
water for clusters with n = 2 (fine, dotted), 3 (fine, dashed), 4 (fine, double-
dotted-dashed), or 5 (fine, solid) water molecules at 303 K and for the CG
model (thick, solid) at 298 K and 1 atm.

cluster decreases with increasing cluster size and the distri-
bution becomes more gaussian-like, indicating a more or less
spherical shape for a cluster of five water molecules. The av-
erage dipole moments are listed in Table II.

2. Distance restrained simulations

Radial distribution function. In principle, the normalized
radial distribution function g(r ) should be zero for distances
shorter than the first solvation shell, and should converged to
1 for large rαβ . For SPC clusters held together by distance re-
straints, the center of geometry of two clusters can lie closer
together than they ideally would. Therefore for clusters with
n >1, the normalization was incomplete as can be seen in
Fig. 5. Nevertheless, the g(r ) gives a first estimate of the
size of a cluster and the minimum distance between two clus-
ters, respectively. The increase in this intercluster distance is
largest between small n and levels off with increasing cluster
size. For n = 5, this distance lies around 0.6 nm.

Self-diffusion coefficient. A simulation time of 1 ns is
in general not sufficient to get converged values for the dif-
fusion coefficient D, but as the averaging was also done

FIG. 5. The radial distribution function (RDF) g(r ) [Eq. (8)] in liquid water
for the clusters with n = 1 (fine, dotted-dashed), 2 (fine, dotted), 3 (fine,
dashed), 4 (fine, double-dotted-dashed), or 5 (fine, solid) water molecules
and for the CG model (thick, solid), where r is the distance between the
centers of geometry (COG) of two clusters or the CW sites of two CG beads,
respectively, at 303 K and 1 atm. For clusters with n = 2–5, simulations with
distance restraining between the molecules of a cluster were used.

over different clusters, good statistics could be obtained.
The experimental diffusion coefficient Dexp for water is 2.3
× 10−5 cm2 s−1. For SPC water, Dn=1 = 5.1 × 10−5 cm2 s−1

is found. With increasing cluster size, the diffusion coeffi-
cient is decreasing from Dn=2 = 2.3 ×10−5 cm2 s−1 to Dn=5

= 0.93 ×10−5 cm2 s−1. This decrease in diffusion with n can
be explained by the fact that the individual water molecules in
a cluster may be pulled into different directions resulting in a
small net displacement of their center of geometry.

Thermodynamic cycle. Thermodynamic properties like
the solvation free energy 
Fsolv of a single water molecule
can be easily calculated and compared with the experimental
value for liquid water. But, for a cluster of water molecules
this is not as easy. Clearly, a CG bead representing a num-
ber of water molecules larger than one, should not reproduce
the experimental value for a single water molecule. Therefore,
knowing the thermodynamic behavior of a water cluster is es-
sential for the sake of comparison. To this end, a thermody-
namic cycle was simulated using thermodynamic integration,

TABLE III. Density ρ, total potential energy per bead Vpot, surface tension γ [Eq. (15)], self-diffusion coefficient D [Eq. (11)], relative static dielectric
permittivity ε(0) [Eq. (19)], and shear viscosity η [Eq. (16)] at 298 K of the CG water model in comparison with experimental data and SPC and SPC/E water,
as well as with the polarizable MARTINI model and the BMW model. Note that ε(0) of the polarizable MARTINI model, which uses εcs = 2.5, was calculated
using the dipole moment fluctuation methodology (Ref. 38) formulated for the case of εcs = 1. ε(0) of the BMW model was obtained from the potential mean
force (PMF) between charged ions.

ρ Vpot γ D ε(0) η

(g cm−3) (kJ mol−1) (mN m−1) (10−5 cm2 s−1) (cP)

Experiment (Refs. 27 and 33) 0.997 –41.5 71.6 2.3 78.4 0.85
SPC (Refs. 39 and 40) 0.972 –41.3 53.4 4.2 66.6 0.49
SPC/E (Ref. 40) 0.994 . . . . . . 2.4 73.5 0.91
GROMOS CG model 0.995 –23.3 51.2 6.9 73.7 3.72
Pol. MARTINI model (Ref. 20) 1.043 . . . 30.5 0.625 75.6 . . .

BMW model (Ref. 19) 1.047 . . . 77 . . . 74 . . .
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TABLE IV. Isothermal compressibility κT [Eq. (15)] at 298 K of the CG
water model in comparison with experimental data and SPC and SPC/E wa-
ter, as well as for the BMW model. For the polarizable MARTINI CG model
no data on the compressibility were reported.

ρ (g cm−3) p (atm) κT (10−5 atm−1)

Expt. (Ref. 27) 0.997 1 4.58
SPC (Ref. 39) 0.947 –447.1

5.5
0.997 475.8

4.0
1.047 1706.4

SPC/E (Ref. 40) 0.994 . . . 5.2
GROMOS CG model 0.947 –384.9

13.8
0.997 22.6

8.4
1.047 608.3

BMW model (Ref. 19) 1.047 . . . 3.3

in which the overall free energy difference 
Fcycle should

be zero (Fig. 2). The free energy of desolvation 
F liquid→gas
SPC

of a single SPC molecule with distance restraints to four
dummy water molecules under NVT conditions at 303 K
is 28 kJ mol−1. Without distance restraints at 300 K, it is
23 kJ mol−1.41 For a cluster of five water molecules, a value
of 80 kJ mol−1 was obtained for the same perturbation.

F liquid

Cluster→SPC was found to be 106 kJ mol−1, and the ana-
log in the gas phase 55 kJ mol−1. This results in an error of
1 kJ mol−1 for the cycle free energy difference 
Fcycle.

B. Coarse-grained simulations

1. Radial distribution function, self-diffusion
coefficient and viscosity

The radial distribution function of the CG model in com-
parison with the SPC clusters is shown in Fig. 5. The peak of
the first solvation shell is at a shorter distance than for clus-
ters with n = 5, i.e., 0.5 nm instead of 0.6 nm. The CG model
was parametrized to reproduce the experimental density at
298 K ρ = 997 kg m−3, while the density of SPC water is ρ

= 972 kg m−3. This too low density results in a too large
intercluster distance for SPC water. Due to the explicit elec-
trostatic interactions, the RDF of the CG model is much less
structured as normally found for Lennard-Jones liquids. For
the CG model, a diffusion coefficient D of 6.9 × 10−5 cm2

s−1 was found, about seven times the value for a cluster of
five SPC water molecules. For the shear viscosity η, a value
of 3.72 cP (centipoise) was obtained which is larger than the
measured viscosity of water. This reflects a reduced momen-
tum transfer in the CG model.

2. Dipole moment and dielectric permittivity

The dipole moment distribution obtained with the CG
model compared with those of the SPC clusters is shown in
Fig. 4. The distribution for CG water is narrower than the dis-
tribution of the (n = 5) cluster, as a single dipole is used to
model the cluster dipole consisting of five molecular dipoles.

FIG. 6. The radial distribution function (RDF) g(r ) [Eq. (8)] from liquid
phase simulations with the CG model at different temperatures T = 258
(black), 278 (red), 298 (green), 318 (blue) and 338 K (orange) and 1 atm.
Here r is the CW–CW distance.

The average dipole moment of 6.4 Debye, however, is very
close to the one found for the clusters, 6.1 Debye. The di-
electric permittivity ε(0) of 73.7 of the CG model is close to
the experimental permittivity of water ε(0) = 78.4 (Ref. 33)
(Table III). The rotational correlation time τrot of the dipole
moment of the CG beads was calculated and compared with
that of a SPC cluster. The decay of both functions is simi-
lar with τrot = 5.6 ps−1 for both the CG model and a SPC
cluster.

Thermodynamic properties. Thermodynamic properties
calculated at 298 K are listed in Tables III–V. The surface
tension γ is a critical property which should be reproduced,
especially when the model is to be used together with lipid
membranes. For the CG model, an average surface tension

TABLE V. Thermal expansion coefficient α [Eq. (12)] and the heat capacity
C p [Eq. (13)] at 1 atm pressure of the CG water model in comparison with
experimental data and SPC and SPC/E water. For the polarizable MARTINI
CG model and the BMW model no data on the thermal expansion coefficient
and heat capacity were reported.

T (K)
ρ

(g cm−3)
α

(10−4 K−1)
C p

(J mol−1 K−1)

Experiment
(Ref. 27)

298 0.997 2.57 75.32

318 0.990 4.22 75.31
338 0.980 5.54 75.43

SPC (Ref. 39) 298 0.972
8.1 64.2

318 0.956
10.0 73.7

338 0.937
SPC/E (Ref. 40) 298 0.994 5.6 80.1
GROMOS CG
model

298 0.995

23 80.7
318 0.951

26 85.7
338 0.901
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γ of 51.2 ± 1.8 mN m−1 was found which is similar to the
value of 53.4 mN m−1 for SPC water. For the isothermal com-
pressibility κT , values of 13.8 × 10−5 and 8.4 × 10−5 atm−1

were obtained, which are higher than in experiment. Thermal
expansion coefficients α of 2.3 × 10−3 and 2.6 × 10−3 K−1

were found. These values are much higher than in experi-
ment which is to be expected due to the larger Lennard-Jones
radii of the CG beads. The softer Lennard-Jones interaction
between CG beads is reflected in the higher heat capacity of
80.7 and 85.7 J mol−1 K−1 obtained for the CG model com-
pared with 75.3 J mol−1 K−1 measured for water. The excess
free energy of the CG beads was calculated using TI simula-
tions. The perturbation was performed for all particles and the
resulting free energy difference was divided by the number of
beads, giving 
F liquid→gas

CG = 11.1 kJ mol−1 per CG bead. The
remaining potential energy in the gas phase due to the un-
constrained bond is 0.4 kJ mol−1 per bead, thus 
U liquid→gas

CG
= 22.9 kJ mol−1 per bead.

3. Temperature range

The temperature-dependent behavior of the CG model
was investigated by performing simulations at different tem-
peratures ranging from 258 to 338 K under NpT conditions.
As can be seen in Fig. 6, the g(r ) becomes more structured
with decreasing temperature. At 258 K, first signs of freezing
can be observed as a splitting in the first peak.

4. Variation of model parameters

Based on separate simulations and the observations made
during the parametrization process, the effects of the variation
of single model parameters on the properties of the CG model
are summarized in Table VI. The impact of the various pa-
rameters on the density, the potential energy per bead, and
the self-diffusion coefficient is easily understandable. The ef-
fect on the surface tension, the average dipole moment per
bead, and the relative static dielectric permittivity appears to
be more complex in certain cases. A decrease in the poten-
tial energy per bead correlates with an increase in the den-
sity of the system and a decrease of the diffusion coefficient.
A decrease in the potential energy results, however, not in

TABLE VI. Effect of a variation of CG model parameters on the liquid
state properties of the CG model if taken independently. The trends repre-
sented are based on separate simulations and the observations made during
the process of parametrization. Parentheses indicate a weak effect.

ρ Vpot γ D ε(0) 〈μ〉

Increase C12 ↓ ↑ ↓ ↑ ↓ . . .

Increase C6 ↑ ↓ ↑ ↓ ↑ . . .

Increase mDP/mCW . . . . . . . . . ↓ ↑ . . . . . .

Increase Kb ↓ ↑ ↓ ↑ ↓ ↓
Increase q ↑ ↓ (↑) ↓ ↓ ↑
Increase rCW−DP ↑ ↓ (↑) ↓ ↓ ↑
Decrease εcs ↑ ↓ (↑) ↓ ↓ ↑

all cases in a higher surface tension, and a higher average
dipole moment leads not necessarily to a higher dielectric
permittivity. When increasing C12, the Lennard-Jones interac-
tion is more repulsive and thus the potential energy per bead
becomes more positive resulting in a lower density, surface
tension and dielectric permittivity, as well as a higher diffu-
sion coefficient while the average dipole moment remains un-
changed. An increase in C6 on the other hand leads to a lower
potential energy, thus a higher density, dielectric permittivity
and surface tension, as well as a lower diffusion coefficient
while the average dipole moment remains again unchanged.
Changing the ratio between the masses of the central and the
dipole particle only affects the diffusion coefficient. Two ef-
fects interact here. If the two particles have similar masses,
they can move with similar inertia in opposite directions re-
sulting in a small net displacement. On the other hand, a large
mass slows a particle down. If the two particles have the same
mass, 45 amu, the first effect is largest. If the central particle is
much heavier than the dipole particle, e.g., a ratio of 80:10, the
motion of the central particle is slowed down, but the dipole
particle cannot pull in another direction thus the displacement
depends only on the central particle. The smallest diffusion
coefficient is therefore found for a mass ratio of 0.5. If Kb

becomes larger, the oscillation of the dipole particle is more
restricted resulting in a lower average dipole moment and thus
a higher potential energy per bead and diffusion coefficient, a
lower density, dielectric permittivity, and surface tension. In-

FIG. 7. (Left) Time series of the relative total energy of the system E rel
tot (t) = Etot(t) − Etot(0) for different time steps 
t = 2 (black), 5 (red), 10 (green), 15

(blue), 20 (orange), 25 (cyan), and 28 fs (magenta). The simulations were performed for a system of 2560 CG beads for 2000 steps under NVE conditions at
298 K. The nonbonded cut-off was 2.0 nm and the pairlist was updated every step. (Right) Fluctuations of the total energy 
Etot (solid) compared to those of
the kinetic 
Ekin (dashed) and the potential energy 
Epot (dotted line) as a function of the integrations time step. Simulations were performed for 5000 steps
under NVE conditions at 298 K. The nonbonded cut-off was set to 3.5 nm and the pairlist was updated every step.
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creasing the partial charges of the two particles in a bead or
the ideal bond length, or decreasing the dielectric permittivity
inside the cut-off sphere result in a higher average dipole mo-
ment, but not a higher dielectric permittivity together with a
lower potential energy and diffusion coefficient, and a higher
density, while the surface tension increases only slightly.

Integration time step and speed-up. There exist a number
of sources or sinks of heat in MD simulations: nonconser-
vative forces, the use of constraints, temperature, and pres-
sure coupling, the nonbonded interaction cut-off and the
integration time step. In simple NVE simulations without
constraints or with a very low tolerance of 10−8 for the
SHAKE algorithm, only the latter two sources remain. For
a sufficiently small time step at a given nonbonded cut-off,
the cut-off noise is dominating the total energy fluctuation.
For fine-grained molecular models, the error in the non-
bonded energy Lennard-Jones term is below 1% at a cut-off of
1.4 nm.42 For this cut-off, a time step of 2 fs was found
to be sufficiently small. The same time step was used con-
servatively in all CG simulations presented here, leading to
a speed-up in computer time of a factor 9 for the same
amount of water molecules, i.e., 12 800 SPC molecules ver-
sus 2560 CG beads. Due to the large size of the CG beads
and the larger cut-off used, a larger time step may be cho-
sen which would increase the speed-up even further. A series
of NVE simulations with different time steps was performed
to evaluate the largest usable time step for a non-bonded
cut-off of 2.0 nm while conserving the total energy of the
system. In Fig. 7(a), the time evolution of the relative total
energy E rel

tot (t) = Etot(t) − Etot(0) for different time steps 
t
is shown. For 
t < 20 fs, the slope of the total energy is sim-
ilar for the different time steps, indicating that the dominating
heat source is the nonbonded cut-off. For 
t ≥ 20 fs, how-
ever, the slope increases with 
t . Additional NVE simula-
tions at a larger cut-off of 3.5 nm were performed to confirm
the findings. At a large enough cut-off and a small enough
time step, the average fluctuation 
E = 〈(E − 〈E〉)2〉1/2 of
the total energy Etot must be much smaller than the average
fluctuation of the kinetic energy Ekin.17 As can be seen in
Fig. 7(b), 
Etot starts to increase significantly after a time
step of 15 fs and becomes larger than 
Ekin between 20 and
25 fs. Thus, a maximum integration time step of maximum
15 fs could be used in a simulation with the CG model, which
corresponds to an overall speed-up of a factor 70 compared
with an all-atom simulation using 
t = 2 fs and Rc = 1.4 nm.

IV. SUMMARY AND CONCLUSIONS

In this study, a polarizable model for coarse-grained wa-
ter was presented, which treats the electrostatics explicitly by
simulating a dipole. The model maps five water molecules
into a coarse-grained bead with two oppositely charged in-
teraction sites. The parameters were fitted to reproduce the
experimental density and relative static dielectric permittiv-
ity of water at 298 K while maintaining the liquid phase.
Various structural and thermodynamic properties were calcu-
lated and compared with measured ones, with those of SPC
water, and if available to those with other CG models. The
thermal expansion coefficient of the CG model was an order

of magnitude too large compared with the experiment, which
is expected due to the larger Lennard-Jones radius of the CG
beads compared with that of oxygen. The isothermal com-
pressibility was found to be closer but still larger than the ex-
perimental value due to softer interactions between the CG
beads compared to molecular water. The surface tension ob-
tained for the CG model is similar to the surface tension of
SPC water. These findings show clearly that some properties
of the liquid phase can no longer be reproduced when going
from the atomistic level to a coarse-grained level. The CG
model proposed offers a speed-up of a factor 9 through the
reduction of the number of interaction sites for a time step of
2 fs as used in fine-grained simulations. In addition, the time
step can be increased up to 15 fs while conserving the total
energy of the system, resulting in a total speed-up of a factor
70. Although this CG water cannot form hydrogen bonds, it
is polarizable and has the correct relative static dielectric per-
mittivity to describe the electrostatic effects of water. In a next
step, the solvation of fine-grained particles in CG water will
be investigated.
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